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ABSTRACT* 

Reed wind instruments are divided into two families: those 
with a cylindrical bore (clarinet) and those with a conical 
bore (saxophone, oboe, bassoon). Apart from the timbre, 
the main features of the behavior of a clarinet can be 
obtained with a resonator modeled with a single mode 
(monochromator), while that of a saxophone can be 
obtained with a resonator modeled with two modes 
(bichromator), whose proper frequencies ratio is close to 2. 
This system has been largely studied by J. Gilbert et al. In 
particular, it has been demonstrated that when the 
inharmonicity is small, the oscillation on the fundamental 
frequency is obtained by an inverse bifurcation. Moreover, 
perfect harmonicity represents an optimum in terms of 
threshold pressure. Now a question remains: to what extent 
does the inharmonicity impact playability? This question is 
investigated in the present paper using both experiments 
and advanced numerical modeling. 

Keywords: Harmonicity - Saxophone - Bifurcation - 
Stability. 

1. INTRODUCTION 

In the 1980s, Jean Kergomard, with Pierre Boulez and 
Ircam, worked on a quarter-tone wind instrument project. 
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The principle was to branch on the instrument, near the 
mouthpiece, a small narrow tube whose effect was to shift 
the range by a quarter tone, thus allowing easy access to 
micro intervals without using complicated fingerings. This 
system worked rather well for the flute and the clarinet and 
had resulted in a patent. Unfortunately, the device did not 
experience the expected development. Nevertheless, Jean 
Kergomard had commissioned us (i.e. Joël Gilbert and 
Jean-Pierre Dalmont) to design a similar device for the 
saxophone and the bassoon. The problem turned out to be 
much more difficult than for cylindrical instruments 
because it quickly became clear that shifting the first 
impedance peak would not be enough because that would 
increase the inharmonicity to a point that makes the 
instrument unplayable. This produced, in certain situations, 
pseudo-periodic sounds combining the first two 
eigenfrequencies. This work allowed us to wonder about 
the functioning of reed instruments with conical bores. 
Examination of the impedance curves shows that conical 
instruments have resonance frequencies that are almost 
harmonic, following the series f1, 2f1, 3f1 etc. with a first 
impedance peak of amplitude often lower than the second. 
On the other hand, the clarinet works on a series f1, 3f1, etc. 
and the first peak has a larger amplitude than all the others. 
We have come to the conclusion that, just as many aspects 
of clarinet operation can be explained with a single-mode 
resonator model (the monochromator), many aspects of 
saxophone operation can be explained with a two-mode 
resonator model: the so called bichromator. Investigating 
the dynamics of this model ([1], then [2] and [3]) has made 
it possible to understand part of the specificities of the 
saxophone and more generally of reed instruments with 
conical bore. 
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2. BICHROMATOR WITH PERFECTLY 
HARMONIC RESONANCES 

Analysis of the impedance curves of reed instruments with 
conical resonators shows that the amplitude of the first 
impedance peak is higher than all the others for the notes at 
the top of the first register (beyond the fingering of A on a 
saxophone or an oboe) while it is lower than the second for 
the fingerings at the bottom of the first register. It was 
therefore relevant to focus on the importance of the relative 
amplitude of these two peaks on the oscillations. 
In [1], appears a diagram of first importance (Fig. 1). This 
diagram is a plot of the following equation which gives the 
condition for a direct bifurcation [1]: 
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where � and � are the second and third coefficient of the 
Taylor expansion of the non-linear characteristics �(�) 
with � the volume velocity and � the pressure in the 
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This shows that when �� >> �� and � < 0 (which is 
always the case for the saxophone), the Hopf bifurcation 
responsible for the emergence of oscillations is direct (top 
corner left on Fig. 1) as in the case of the clarinet. This 
means that when the pressure is gradually increased, the 
reed destabilizes for a given pressure called "direct pressure 
threshold" ���� and begins to oscillate first with a low and 
then growing amplitude (see Fig. 2a). The diagram in Fig. 1 
shows that when �� is only slightly larger than ��, the 
bifurcation becomes inverse, i.e. when the pressure is 
gradually increased, the reed destabilizes at the "direct 
pressure threshold" ���� but begins to oscillate with a large 
amplitude (blue arrow on Fig. 2b). It is then possible to 
reduce the pressure until the sound dies out at a pressure 
lower than the direct threshold pressure, known as the 
inverse pressure threshold or subcritical threshold ��� (red 
arrow on Fig. 2b), 
The analysis in [1] shows that if �� > �� the bifurcation is 
always direct because � < 0 (Eqn. (1)). This result is 
surprising to say the least: indeed, this situation corresponds 
to the notes of the bottom of the first register and there is no 
reason for the bifurcation to become direct in a sudden 
manner when �� = ��. The question was investigated in 
[2], where it has been shown that the direct bifurcation 
actually corresponds to the branch of the inverted 
Helmholtz motion which is only observed at high level, 

 

 

Figure 1. Diagram showing the regions where the 
bifurcation is direct as well as those regions where it 
is inverse (Eqn. (1)). Abscissa is for coefficient C, 
cubic term of the Taylor expansion of the non-linear 
characteristics �(�). �� − �� is the admittance 
difference between the second and first modes (from 
[2]). HM stands for Helmholtz Motion. 

 
Figure 2. Diagram showing the amplitude |��| of the 
first harmonic as a function of the mouth pressure for 
two situations: a) direct bifurcation b) inverse 
bifurcation (dotted line: unstable solution) (from [1]). 

a) 

b) 
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beyond the extinction threshold of the Helmholtz motion 
[4-6]. 
The branch of the Helmholtz motion is connected to the 
branch of the second regime (at the octave) whose direct 
threshold is ����. In this situation ���� is lower than the 
direct threshold of the fundamental ���� (Fig. 3): indeed the 
higher the impedance, the lower the threshold. The 
Helmholtz motion thus emerges from an inverse bifurcation 
with a brief passage over the octave. These results have an 
obvious practical consequence: it is difficult or even 
impossible to play pianissimo in the low register with a 
saxophone. 
 

 
Figure 3. Bifurcation diagram for �� > ��. RMS 
pressure with respect to the mouthpressure ��. All 
quantities are normalized by the minimum closing 
pressure ��. +++ unstable solutions (from [2]). 
 

3. SLIGHTLY INHARMONIC BICHROMATOR 

In practice, the harmonicity of the resonance frequencies is 
never perfectly satisfied, especially at the top of the first 
register, because the length of the truncation is no longer 
small compared to the wavelength. The truncated cone with 
equivalent volume is then no longer a good approximation 
of the stepped cone. The problem of the slightly inharmonic 
bichromator has been treated in [3] where it is also observed 
that the lowest oscillation thresholds are obtained for 
perfectly harmonic resonances thus confirming the 
prescription of Bouasse-Benade [7-8]. Moreover, it appears 
that the almost non-existent octave stability range in the 
harmonic case takes on a significant proportion. It is 

observed that there is a pressure range in which the two 
regimes are stable (Fig. 4). In practice, this means a higher 
risk of inadvertent emission of the octave. On the other 
hand, this phenomenon can be advantageously used to 
make it possible to play the note and its octave with the 
same fingering as is the case for the baroque oboe for 
example. Indeed, on this instrument, there is no register key 
and the octave is obtained by a subtle modification of the 
embouchure. 

 
Figure 4. Bifurcation diagram for 
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− 1 = 0.03. Thick/thin lines: stable/unstable 

oscillations. Blue: fundamental Helmholtz motion. 
Red: octave. Green: inverted fundamental Helmholtz 
motion (from [3]). 

4. QUANTITATIVE ANALYSIS OF THE 
INFLUENCE OF THE INHARMONICITY AND THE 

AMPLITUDE RATIO OF THE TWO MODES 

Beyond the qualitative observations in [3], we would like to 
be able to easily deduce the possible playing frequency 
from the impedance curve. In the present work, with the 
methods used in [3], we aim at evaluating the playing 
frequency as a function of both the inharmonicity and the 
amplitude ratio of the two modes. The results will be 
compared with those obtained with the “sum function” of 
Wogram and Worman [9-10]. We can also compare with 
Grothe's proposal who weights the reduced frequency ��/� 
of each mode by their amplitudes. We also investigate to 
what extent studying the dependence of stability ranges of 
the sound regimes on the harmonicity and relative 
amplitude of modes can help predict playing difficulties.  

5. EXPERIMENTAL VALIDATION 

In [12], a first experimental validation was attempted 
with an artificial mouth and a saxophone body extended 
with cylindrical tubes of different lengths. It turns out 
that the hypothesis of a linear resonator is not tenable 
with a saxophone because the non-linear losses at the 
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side holes [13-14] are in practice never negligible. 
Indeed the comparison between theory and experiment 
on Fig. 5 emphasize the fact that the dynamics is more 
reduced in practice than in the theory. This work will be 
resumed with resonators made up of two cylinders, the 
last cylinder being extended by a network of large lateral 
holes. Whatever the results of these experiments, the 
existence of non-linear losses in the instruments with 
lateral holes must lead us to be cautious about the results 
of the numerical calculations and in particular for 
instruments with small lateral holes.  

 
 

Figure 5. Experimental and theoretical bifurcation 
diagram for fingering C of an alto saxophone. 
Light/dark green: experiment with/without reed 
dynamics. Blue/orange marks: experiments with 
increasing/decreasing mouthpressure (from [12]). 

6. CONCLUSION 

The approach proposed by Joël Gilbert, consisting in 
approaching the saxophone by a two-mode model, has 
proven to be extremely fruitful for the understanding of its 
operation. The model has not been fully exploited yet, and 
with current digital tools can be used to unveil behavior 
laws to extrapolate playing frequencies and anticipate some 
emission difficulties. 
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